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Drug development programs include multiple 
studies of increasing complexity
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Phase IV

• Optimization of 
drug use

• Population 
PK/PD models

Phase III

• Test clinical 
hypotheses in 
RCTs

• Refine dose 
and regimen 
for special 
populations

Phase II

• Update PK/PD 
models to 
optimize dose 
and regimen in 
phase III

• Assess 
probability of 
success

Phase I

• Utilize safety, 
PK, and PD 
data to project 
dose and 
regimen for 
phase II

Pre-clinical

• Animal studies 
to calibrate 
dose range for 
phase I studies 
in humans



Why is it important to consider optimal 
designs for clinical trials?
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Higher quality results 
(increased statistical power, 
more accurate estimates of 
treatment effects) for the 
given resource constraints

Lower sample size and/or 
decreased study cost (and 
potentially faster study 
completion) for the given data 
quality objectives

Study participant benefit: 
maximize information from 
the trial while minimizing 
exposure of study subjects to 
suboptimal treatments



Optimal design ingredients
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 Goals of phase I: characterize safety, 
tolerability, and PK of a compound
 In oncology: to determine the maximum 

tolerated dose (MTD)

 For ethical reasons, phase I studies 
are cast as dose-escalation designs
 Only when the previous dose is 

deemed ‘safe’ would the next cohort of 
subjects be assigned to the next dose

 Various methodologies to determine 
MTD are available
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Phase I dose-toxicity study 



 𝑑𝑑1 < 𝑑𝑑2 < ⋯ < 𝑑𝑑𝐾𝐾 - study doses
 Outcome: Toxicity (Yes/No)
 Probability of toxicity is modeled 

using a 2-parameter logistic curve:

𝑃𝑃 𝑑𝑑 = Pr 𝑌𝑌 = 1 𝑑𝑑 =
1

1 + 𝑒𝑒−(𝛼𝛼+𝛽𝛽𝛽𝛽)

 𝛼𝛼 and 𝛽𝛽 > 0 are unknown 
parameters; monotone increasing 
dose-toxicity relationship

8

Phase I dose-toxicity study 

 Estimands of interest:
 𝑃𝑃(𝑑𝑑) for a given 𝑑𝑑 > 0
 50th percentile of the dose-tox curve
 MTD - say, 20th percentile of the dose-

tox curve: 𝐷𝐷20 = (log 0.2
1−0.2

− 𝛼𝛼)/𝛽𝛽



Phase I dose-toxicity study 
How do we estimate dose-toxicity curve?

 Data structure: { 𝑑𝑑𝑖𝑖 ,𝑛𝑛𝑖𝑖 , 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1, … ,𝐾𝐾}

𝑥𝑥𝑖𝑖 ∼ 𝐵𝐵𝑖𝑖𝑛𝑛 𝑛𝑛𝑖𝑖 ,𝑃𝑃𝑖𝑖 , where 𝑃𝑃𝑖𝑖 = 1

1+𝑒𝑒− 𝛼𝛼+𝛽𝛽𝑑𝑑𝑖𝑖

 Likelihood: ℒ 𝛼𝛼,𝛽𝛽 = ∏𝑖𝑖=1
𝑚𝑚 𝑃𝑃𝑖𝑖

𝑥𝑥𝑖𝑖 1 − 𝑃𝑃𝑖𝑖 𝑛𝑛𝑖𝑖−𝑥𝑥𝑖𝑖

 MLE ( �𝛼𝛼, �̂�𝛽) is obtained as a solution to the system of score equations:
𝜕𝜕
𝜕𝜕𝛼𝛼

logℒ 𝛼𝛼,𝛽𝛽 = ∑𝑖𝑖=1𝑚𝑚 (𝑥𝑥𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑃𝑃𝑖𝑖) = 0
𝜕𝜕
𝜕𝜕𝛽𝛽

logℒ 𝛼𝛼,𝛽𝛽 = ∑𝑖𝑖=1𝑚𝑚 𝑥𝑥𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑃𝑃𝑖𝑖 𝑑𝑑𝑖𝑖 = 0

 By the invariance property of MLE, other parameters can be readily estimated, 
e.g., �𝐷𝐷20 = (log 0.2

1−0.2
− �𝛼𝛼)/�̂�𝛽
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Phase I dose-toxicity study 
How do we quantify uncertainty?

 Uncertainty quantification:
�Var �𝛼𝛼, �̂�𝛽 ≈ 𝑴𝑴−1 �𝛼𝛼, �̂�𝛽 (inverse of the observed Fisher information)

 Once we have ( �𝛼𝛼, �̂�𝛽) and 𝑴𝑴−1 �𝛼𝛼, �̂�𝛽 , we can construct (asymptotic) 95% CI’s for 𝛼𝛼
and 𝛽𝛽:

�𝛼𝛼 ± 1.96 var �𝛼𝛼 and �̂�𝛽 ± 1.96 var �̂�𝛽

 Using delta-method, we can obtain 95% CI’s for other parameters, such as MTD:
�Var �𝐷𝐷20 =

1
�̂�𝛽2

var �𝛼𝛼 + �𝐷𝐷202 var �̂�𝛽 − 2�𝐷𝐷20cov �𝛼𝛼, �̂�𝛽

�𝐷𝐷20 ± 1.96 �Var �𝐷𝐷20
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Phase I dose-toxicity study
Example
 Phase I study of the ChemoTx agent R115777 conducted at the University of 

Maryland School of Medicine (Karp et al., 2001) 
 n=34 patients with acute leukemia, treated at 5 different doses  

 2-parameter logistic model was fitted: 
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Dose 100mg 300mg 600mg 900mg 1200mg
Assigned 6 5 8 11 4

Number of toxicities 0 0 3 6 3

Proportion of toxicities 0 0 0.375 0.545 0.750

Estimate 95% CI
𝛼𝛼 -3.7958 (-7.1276, -1.59015)

𝛽𝛽 0.004468 (0.0016986, 0.0084355)



 Estimates of toxicity probabilities at 
study doses were obtained

 Estimates of 𝐷𝐷20 and 𝐷𝐷50:

 The dataset is small (n=34) ⇒
estimation uncertainty is high
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Phase I dose-toxicity study
Example contd.
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Phase I dose-toxicity study
Can we optimize the design of the next study?

 Design: 𝛏𝛏 = 𝑑𝑑𝑖𝑖 , 𝜌𝜌𝑖𝑖 , 𝑖𝑖 = 1, … ,𝐾𝐾
 𝑑𝑑𝑖𝑖 ’s – dose levels
 𝜌𝜌𝑖𝑖 = 𝑛𝑛𝑖𝑖/𝑛𝑛 – allocation proportion for 𝑑𝑑𝑖𝑖

 Fisher Information Matrix (FIM) for design 𝛏𝛏:
𝑴𝑴 𝛏𝛏,𝛼𝛼,𝛽𝛽 = 𝑛𝑛∑𝑖𝑖=1𝐾𝐾 𝜌𝜌𝑖𝑖 𝑴𝑴𝑖𝑖 𝛼𝛼,𝛽𝛽 , where 𝑴𝑴𝑖𝑖 𝛼𝛼,𝛽𝛽 = information at dose 𝑑𝑑𝑖𝑖

 Optimal design problem: 
minimize Φ 𝑴𝑴−1 𝛏𝛏,𝛼𝛼,𝛽𝛽 w.r.t. 𝛏𝛏

Φ = det ⇒ D-optimality ⇒min(volume of the confidence ellipsoid for 𝜽𝜽)
 Beautiful convex design theory, algorithms and numerical techniques, all beyond 

the scope of presentation; see Fedorov and Leonov (2014) and references therein
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 The D-optimal design minimizing 
𝑴𝑴−1 𝛼𝛼,𝛽𝛽 is a 2-point design, 

symmetric around 𝐷𝐷50, equally 
supported at the 18th and 82nd

percentiles of the dose–toxicity curve

𝛏𝛏𝐷𝐷−𝑜𝑜𝑜𝑜𝑜𝑜∗ = (𝐷𝐷18, 1
2
), (𝐷𝐷82, 1

2
)

𝐷𝐷18 = log(0.18/0.82)−𝛼𝛼
𝛽𝛽

, and

𝐷𝐷82 = log(0.82/0.18)−𝛼𝛼
𝛽𝛽
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Phase I dose-toxicity study
D-optimal design
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Phase I dose-toxicity study
How to facilitate a comparison among designs?

 Efficiency of the implemented design 𝛏𝛏 (Karp et al., 2001) relative to the D-optimal 

design 𝛏𝛏∗(for the same sample size) is Deff = 𝑴𝑴
−1 𝛏𝛏∗,𝜽𝜽

|𝑴𝑴−1 𝛏𝛏,𝜽𝜽 |
= 3.45⋅10−7

5.16⋅10−7

1/2
= 0.82
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Merits
 ODs provide important theoretical 

benchmarks to compare various 
designs w.r.t. selected optimality 
criteria
 If properly implemented, ODs can help 

achieve study goals with a reduced 
sample size/study cost
 D-optimal design maximizes 

information for estimating the entire 
dose-toxicity curve

Limitations
 ODs depend on the choice of 

statistical model
 ODs frequently depend on the true 

parameter values (local optimality)
 D-optimal design allocates 50% of 

subjects to the doses with toxicity 
probabilities 18% and 82% - may not 
be ‘clinically optimal’
 Frequently require advanced 

numerical optimization

Phase I dose-toxicity study
What are merits and limitations of optimal designs?



Phase I dose-toxicity study
Can more elaborate models be considered?

 Instead of a 2-parameter logistic dose–toxicity model, one can consider 3- or 4-
parameter logistic models (Li and Majumdar, 2008)
 Since phase I trials are small, striking the right balance between model parsimony and 

rigor is important

 Optimal designs for other types of outcomes (e.g., ordinal toxicity grades with a 
proportional odds model) are available (Perevozskaya et al., 2003)

 Design space may be more complex
 Optimal designs for drug combination studies (Fedorov and Leonov, 2014)
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Phase I dose-toxicity study
How to overcome the issue of local optimality?

 Bayesian optimal design – minimizes average value of the criterion given the 
prior distribution of the parameters (Chaloner and Larntz, 1989)

 Minimax design – minimizes worst value of the criterion over the range of 
model parameter values (King and Wong, 2000)

 Adaptive design – sequentially updates model parameters and directs future 
dose assignments to the targeted optimal design
 Any phase I dose-escalation study is adaptive; however, adaptations are performed 

based on individual patient safety considerations, not based on statistical precision
 Adaptive designs that formally combine “treatment” and “learning” goals merit 

consideration (Haines et al., 2003; Bartroff and Lai, 2011)
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Phase I dose-toxicity study
Can a design combine ‘treatment’ and ‘learning’ goals?
Constrained Bayesian optimal designs (Haines et al., 2003):

 2-parameter logistic dose–toxicity model, with a prior distribution for 𝜽𝜽 = 𝛼𝛼,𝛽𝛽

 Constrained optimization problem:
𝐸𝐸 log 𝑴𝑴−1 𝛏𝛏,𝜽𝜽 → min (w.r.t. 𝛏𝛏)

subject to to an “overdose” constraint: ∑𝑖𝑖=1𝐾𝐾 𝜌𝜌𝑖𝑖Pr(𝜇𝜇𝑅𝑅 ≤ 𝑑𝑑𝑖𝑖) ≤ 𝜀𝜀

(𝜇𝜇𝑅𝑅=maximum dose that cannot be exceeded; 𝜀𝜀 > 0 small, investigator-specified constant)

 Implementation in practice:
 2-stage: 𝑛𝑛0 subjects are assigned to doses using some pilot design + 𝑛𝑛1 subjects are 

assigned to doses according to updated optimal design 
 Sequential: Small pilot design + subsequent sequential assignments to maximize 

incremental gain in information while protecting patient safety
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 The methodology (Haines et al., 2003) 
incorporates clinicians’ prior knowledge 
on the dose-toxicity curve and utilizes 
Bayesian OD theory to efficiently 
estimate target quantities with as few 
patients as possible

 The sequential design has established 
asymptotic properties (convergence to 
the targeted design) (Roy et al., 2009)

 Statistical software (iDose) is available 
(Rosenberger et al., 2005); yet, need to 
check if it is still supported
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Phase I dose-toxicity study
Why consider constrained Bayesian optimal designs?



Phase I/II efficacy-toxicity study 

 Development of a targeted therapy in oncology is different from                          
that of a cytotoxic drug
 Lower risk of toxicity
 Efficacy may plateau at doses below MTD

 Seamless phase I/II designs incorporate toxicity and efficacy (response) in 
dose-finding objectives
 Joint modeling of a dose–toxicity–efficacy relationship
 Phase I/II trial is typically larger that a single phase I trial
 Avoids administrative wait between phase I and II protocol activation
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 Ω = {𝑑𝑑1 < ⋯ < 𝑑𝑑𝐾𝐾} - study doses
 Dose-toxicity and dose-efficacy 

probability curves
𝑝𝑝𝑇𝑇 𝑑𝑑 = Pr(𝑌𝑌𝑇𝑇 = 1|𝑑𝑑) (Tox)
𝑞𝑞𝐸𝐸 𝑑𝑑 = Pr(𝑌𝑌𝐸𝐸 = 1|𝑑𝑑) (Eff)

 Maximum tolerated dose (MTD):
max{𝑑𝑑 ∈ Ω: 𝑝𝑝𝑇𝑇 𝑑𝑑 ≤ �̅�𝑝𝑇𝑇}

 Minimum efficacious dose (MED):
min{𝑑𝑑 ∈ Ω: 𝑞𝑞𝐸𝐸 𝑑𝑑 ≥ 𝑞𝑞𝐸𝐸}
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Phase I/II efficacy-toxicity study
Bivariate binary outcomes

𝑞𝑞𝐸𝐸 = 0.4

�̅�𝑝𝑇𝑇 = 0.3

MED MTD

𝑞𝑞𝐸𝐸 𝑑𝑑

𝑝𝑝𝑇𝑇 𝑑𝑑

Therapeutic Window: 
[MED, MTD]



 “Success” = Efficacy without toxicity: 
𝑌𝑌𝐸𝐸 ,𝑌𝑌𝑇𝑇 = 1,0

 Probability of Success: 
𝑠𝑠 𝑑𝑑 = Pr 𝑌𝑌𝐸𝐸 = 1 𝑌𝑌𝑇𝑇 = 0,𝑑𝑑 × Pr 𝑌𝑌𝑇𝑇 = 0 𝑑𝑑

 Most Successful Dose (MSD):
A dose 𝑑𝑑∗ ∈ Ω that maximizes 𝑠𝑠 𝑑𝑑

 Safe MSD (sMSD):
A dose 𝑑𝑑∗ ∈ Ω that maximizes 𝑠𝑠 𝑑𝑑
while satisfying the MTD constraint: 

Pr 𝑌𝑌𝑇𝑇 = 1 𝑑𝑑∗ ≤ �̅�𝑝𝑇𝑇
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Phase I/II efficacy-toxicity study
Joint outcomes

𝑞𝑞𝐸𝐸 𝑑𝑑

𝑞𝑞𝐸𝐸 = 0.4

𝑝𝑝𝑇𝑇 𝑑𝑑

�̅�𝑝𝑇𝑇 = 0.3

𝑠𝑠 𝑑𝑑

MSDsMSD



Phase I/II efficacy-toxicity study
Objectives

 ‘Treatment’ goal: To cluster dose assignments at and around safe MSD
 ‘Learning’ goals:
 To identify safe MSD (or stop the trial early if no dose satisfies safety & efficacy 

requirements)
 To estimate safe MSD, MTD, MED, and possibly other parameters at the end of the 

study

 Seemingly similar goals of identification/estimation of safe MSD may require 
different design considerations

 These objectives must be reliably achieved with as few patients as possible
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 Nonparametric up-and-down design 
(Ivanova, 2003)

 Bayesian ‘best intention’ designs
 Bivariate CRM (Braun, 2002)
 Eff-tox method (Thall and Cook, 2004)

 Adaptive penalized optimal designs 
(Dragalin and Fedorov, 2006)

 It is difficult to recommend any 
particular design as “best”
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Phase I/II efficacy-toxicity study
Various designs have been developed for this purpose



Phase I/II efficacy-toxicity study
Adaptive penalized ODs (Dragalin and Fedorov, 2006)

 Postulate a statistical model for dose–response: 𝜋𝜋𝑇𝑇,𝐸𝐸(𝑑𝑑,𝜽𝜽), 𝑑𝑑 ∈ Ω
 Fisher information matrix:𝐌𝐌 𝛏𝛏,𝜽𝜽 = ∑𝑘𝑘=1𝐾𝐾 𝜌𝜌𝑘𝑘𝜋𝜋𝑇𝑇,𝐸𝐸(𝑑𝑑𝑘𝑘 ,𝜽𝜽)
 Cost function penalizing doses with low success and high toxicity: 
𝜙𝜙 𝑑𝑑,𝜽𝜽,𝐶𝐶𝐸𝐸 ,𝐶𝐶𝑇𝑇 > 0, where 𝐶𝐶𝐸𝐸 ≥ 0 and 𝐶𝐶𝑇𝑇 ≥ 0 are user-specified constants

 Penalized optimal design problem:

log
𝐌𝐌−1 𝛏𝛏,𝜽𝜽

∑𝑘𝑘=1𝐾𝐾 𝜌𝜌𝑘𝑘𝜙𝜙 𝑑𝑑𝑘𝑘 ,𝜽𝜽,𝐶𝐶𝐸𝐸 ,𝐶𝐶𝑇𝑇
→ min (w.r.t. 𝛏𝛏)

 Implementation: some ‘start-up’ dose-escalation design to ascertain initial data 
for estimating 𝜽𝜽, then sequential dose assignments to maximize incremental 
increase of information per cost unit
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Phase I/II efficacy-toxicity study
Why consider adaptive penalized optimal designs?

 Substantial improvement in accuracy of dose–response estimation compared 
to ‘best intention’ designs (Dragalin and Fedorov, 2006) 

 Good balance between ‘treatment’ and ‘learning’ goals in small-to-moderate 
experiments; known asymptotic properties (Pronzato, 2010)

 Bayesian adaptive penalized D-optimal design has competitive performance to 
Thall and Cook’s Eff-Tox method (Gao and Rosenberger, 2013)

 While in practice it may be difficult to gain IRB clinical approval for these 
designs, they may be more readily applicable in animal studies where ethical 
issues are not as high as in human experiments
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Phase II dose-ranging study 

 Randomized, placebo- and/or active-controlled trial with                                    
several doses of an investigational drug, with sample sizes                                       
up to several hundred patients

 Research questions in phase II:
 Is there any evidence of a drug effect (proof-of-concept)?
 Which dose(s) exhibit a response different from the control?
 What is the dose–response relationship?
 What is the “optimal” dose for taking into phase III?

 Design considerations:
 Sample size
 Dose levels and allocation proportions for the chosen doses
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Phase II dose-ranging study
Statistical analysis approaches

 Multiple comparison procedures
 Dose is regarded as a classification factor
 ANOVA test + stepwise procedures to identify dose(s) that are significantly different 

from placebo

 Modeling techniques
 Dose is regarded as a continuous predictor for the mean response
 Regression modeling allows borrowing strength across dose levels and extrapolate 

the results beyond the study doses

 MCP-Mod (Bretz et al., 2005):
 A combination of multiple comparisons (MCP) with modeling techniques (Mod)
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Phase II dose-ranging study
Design optimization challenges 

 In practice, the true model is unknown at the trial design stage ⇒ uncertainty in 
the planning of the experiment

 There are several (seemingly similar) research questions which require 
different choice of study design; e.g.:

a) Is there a dose-related effect at all?
b) What is the smallest dose that achieve a clinically relevant effect Δ over placebo?
c) Which dose achieves a 50% of the maximum effect (ED50)?
d) Where does the dose–response curve start to plateau?

 Question a) involves hypothesis testing; questions b) – d) involve estimation
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 Quadratic dose-response model for 
event times: 𝑇𝑇~𝑊𝑊𝑒𝑒𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 with 
𝑀𝑀𝑒𝑒𝑑𝑑𝑖𝑖𝑀𝑀𝑛𝑛 𝑇𝑇 = exp 𝛽𝛽0 + 𝛽𝛽1𝑑𝑑 + 𝛽𝛽2𝑑𝑑2 ln 2 𝑏𝑏

Doses: 𝑑𝑑 ∈ [0,1]; 0 =placebo; 1=MTD
Parameters: 𝜽𝜽 = (𝛽𝛽0,𝛽𝛽1,𝛽𝛽2, 𝑊𝑊), 𝑊𝑊 > 0

 Observations may be right-censored 
 Objective: estimate dose–response 

as accurately as possible by 
allocating 𝑛𝑛 subjects to ‘most 
informative’ dose levels
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Phase II dose-ranging study
Example: D-optimal design for time-to-event outcomes

Plausible median time-to-event dose-response



 Without censoring, D-optimal design 
is a 3-point, uniform design
 Equal allocation proportions (1/3) to 
𝑑𝑑 = 0 (placebo); 𝑑𝑑 = 0.5 (middle dose); 
and 𝑑𝑑 = 1 (highest dose)

 In the presence of censoring, D-
optimal design still has 3 points, but 
the doses are different and allocation 
proportions are unequal
 Higher amount of censoring ⇒ greater 

degree of skewness from the uniform 
design
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Phase II dose-ranging study
Example: D-optimal design for time-to-event outcomes

Weibull model with 𝛽𝛽0 = 1.9, 𝛽𝛽1 = 0.6, 𝛽𝛽2 = 2.8, 
𝑊𝑊 = 0.65, and average probability of event = 50%

True dose-response curve

Allocation proportions at optimal doses



Phase II dose-ranging study
Adaptive D-optimal design for time-to-event outcomes

 Stage 1: 𝑛𝑛1 subjects are randomized equally among the doses 0, 0.5, and 1
 Interim analysis (𝑘𝑘 = 2, … , 𝜈𝜈):
 Update model estimates �𝜽𝜽 based on accrued data from stages 1, … , 𝑘𝑘 − 1
 Check the pre-specified stopping rule: Has the desired estimation precision been 

achieved?
 YES ⇒ STOP
 NO ⇒ Compute D-optimal design 𝜉𝜉∗(�𝜽𝜽)

 Stage 𝑘𝑘: Randomize 𝑛𝑛𝑘𝑘 patients to doses according to 𝜉𝜉∗(�𝜽𝜽)
 Thus, the design applies response-adaptive randomization to cohorts of subjects, to 

concentrate assignments at ‘most informative’ dose levels
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 D-optimal design depends on the 
underlying model and the amount of 
censored data

 Equal allocation (uniform) design can 
be highly inefficient

 Adaptive D-optimal design with early 
stopping facilitates learning about the 
model and can potentially reduce 
study size with better estimation 
accuracy than the uniform design

More details in the two papers            
(2018, AAPS Journal):
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Phase II dose-ranging study
Why consider adaptive D-optimal design?



 RCT is regarded as the ‘gold standard’ 
clinical research design
 Evidence from RCTs is widely used as a 

basis for submissions in request of marketing 
authorization of new drugs, biologics and 
medical devices

 Randomization is used to ensure group 
comparability w.r.t. known and unknown 
confounders

 Sample size is chosen to have sufficient 
statistical power

 Data analysis involves estimation/test of 
treatment group difference (with possible 
adjustment for important covariates)

35

Phase III randomized controlled trial (RCT)
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Phase III randomized controlled trial
Design considerations

Primary outcome

Number of treatment arms

Choice of control group

Sample size

Interim analyses

Allocation ratio

Randomization procedure

 Allocation ratio
 Equal (1:1) allocation is frequently (but 

not always) optimal

 Randomization procedure
 Tradeoff between treatment balance 

and allocation randomness



Phase III randomized controlled trial
Unequal allocation ratio may sometimes be preferred

 Heteroscedastic outcomes: If standard deviation is different between study 
arms ⇒ Neyman allocation 𝜎𝜎𝐸𝐸:𝜎𝜎𝐶𝐶 (experimental to control) maximizes power

 Unequal treatment cost: 𝜎𝜎𝐸𝐸
𝑤𝑤𝐸𝐸

: 𝜎𝜎𝐶𝐶
𝑤𝑤𝐶𝐶

minimizes study cost for a given power 
 If experimental is 4 times as expensive as control ⇒ 1:2 allocation experimental to 

control is most cost-efficient

 Vaccine RCTs frequently utilize 2:1 allocation experimental to control
 Ethical considerations: If disease is severe and/or rare ⇒ it is desirable to 

minimize number of treatment failures while maintaining study power
 Platform trials: In a multi-arm trial with a shared control group, allocation ratio 

to control may be gradually decreased
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Phase III randomized controlled trial
Optimal response-adaptive randomization (RAR)

 Hu and Rosenberger (2003) developed ‘optimal RAR framework’ for a 𝐾𝐾-arm RCT:
1. Derive optimal allocation proportions to satisfy chosen experimental objectives:                   

𝜌𝜌𝑗𝑗∗ = 𝜌𝜌𝑗𝑗 𝜽𝜽 , 𝑗𝑗 = 1, … ,𝐾𝐾, ∑𝜌𝜌𝑗𝑗 = 1.
2. Construct a RAR procedure with low variability and fast convergence to the chosen 

optimal allocation:
𝜋𝜋𝑖𝑖𝑗𝑗 = Pr(𝑖𝑖𝑖𝑖𝑖 subject is randomized to treatment 𝑗𝑗) = 𝜋𝜋𝑗𝑗

𝑁𝑁𝑗𝑗 𝑖𝑖
𝑖𝑖

, 𝜌𝜌𝑗𝑗(�𝜽𝜽) , 𝑖𝑖 ≥ 𝑛𝑛0, 𝑗𝑗 = 1, … ,𝐾𝐾
3. Evaluate properties of the RAR procedure (type I error rate, power) through simulation 

under standard to worst-case experimental scenarios 
 Fixed total sample size (no early stopping) is assumed
 Estimators and tests have known asymptotic properties under widely satisfied 

conditions on 𝜌𝜌𝑗𝑗 𝜽𝜽 and the allocation function 𝜋𝜋𝑗𝑗
 Conceptually different from ‘Thompson’s sampling’ (Bayesian RAR)
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Optimal response-adaptive randomization (RAR)

 This approach (Hu and Rosenberger, 2003) was applied to develop optimal RAR 
designs in various settings 
 Binary, continuous, time-to-event outcomes
 Two-arm and multi-arm RCTs
 Longitudinal RCTs 
 Sample size reassessment

 The approach relies on certain assumptions (common to RAR trials), such as:
 ‘Better’ treatment is not more toxic
 Outcomes are observed relatively quickly to enable design adaptations
 There is no drift in patient characteristics over time
 Measures to protect study integrity (blinding of sponsors/investigators, etc.) are in place
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Optimal RAR for multi-arm survival trials

 Several papers developed optimal RAR designs for 𝐾𝐾 ≥ 2-arm survival RCTs 
(Sverdlov et al., 2011, 2014; Frieri and Zagoraiou, 2021)

 Value:
 Increased allocation to more variable treatment arms exhibiting longer survival ⇒ dual goals 

of statistical efficiency and individual patient benefit are addressed
 Simulation evidence shows that type I error rate is maintained at the nominal level, and 

power is the same or higher compared to equal allocation with the same sample size
 Robustness to model misspecification (distribution of event times)

 Challenge:
 Events are naturally delayed ⇒ RAR is meaningful only when ~60% or more outcomes are 

observed during the recruitment phase of the trial
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 FDA finalized guidance ‘Adaptive 
Designs for Clinical Trials of Drugs 
and Biologics’ in November 2019

 RAR is mentioned in Section V 
(Adaptive Designs Based on 
Comparative Data), subsection E 
(Adaptations to Patient Allocation)

41

Phase III randomized controlled trial
Regulatory view on RAR has evolved over time...



Response-adaptive randomization 
Further challenges and opportunities

Platform trials:
 How to define ‘optimal allocation’ given that the number of experimental treatment 

arms is not known upfront?
 How to modify allocation to the shared control over time given that experimental 

arms may be added/dropped during the study? (Kaizer et al., 2018)
 Incorporating stratification factors (genetic signatures and other predictive 

biomarkers)
 Strong control of the type I error rate
One recent manuscript (Robertson et al., 2021) provides a fresh outlook at 
methodological and practical aspects of RAR in clinical trials
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 PK: description of the plasma 
concentration of a drug as a function of 
time (what the body does to the drug)

 PD: description of the drug effects 
(what the drug does to the body)

 PK/PD model links the effect of dose 
on trug concentration and drug 
response over time
 Mechanistic modeling of individual subject 

profiles with an assessment of 
corresponding uncertainty
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Population PK/PD studies

Nonlinear mixed effects model (NLMEM):

𝒀𝒀𝑖𝑖 = 𝒇𝒇 𝒕𝒕𝑖𝑖 ,𝒅𝒅𝑖𝑖 ,𝜽𝜽,𝜼𝜼𝑖𝑖 + 𝜀𝜀𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛
 𝒀𝒀𝑖𝑖 = vector of responses
 𝒇𝒇 = nonlinear (vector) function
 𝒅𝒅𝑖𝑖 = vector of administered doses
 𝒕𝒕𝑖𝑖 = vector of sampling time points
 𝜽𝜽 = vector of typical parameter values
 𝜼𝜼𝑖𝑖 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝛀𝛀) = inter-individual 

variabilities
 𝜺𝜺𝑖𝑖 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝚺𝚺) = measurement errors



Population PK/PD studies
Parameter Estimation

 MLE of parameters (𝜽𝜽,𝛀𝛀,𝚺𝚺) is found by maximizing the integrated likelihood 
(�𝜽𝜽, �𝛀𝛀, �𝚺𝚺) = arg max

𝜽𝜽,𝛀𝛀,𝚺𝚺
∑𝑖𝑖=1𝑛𝑛 log ∬ℓ𝑖𝑖 𝒚𝒚𝑖𝑖 ,𝜼𝜼 𝜽𝜽,𝚺𝚺 ⋅ 𝑝𝑝 𝜼𝜼 𝛀𝛀 𝑑𝑑𝜼𝜼

 No closed-form solution; advanced numerical optimization is required
 First-order (FO) method (Beal and Shiner, 1982), originally implemented in NONMEM
 First-order conditional estimation (FOCE) (Lindstrom and Bates, 1990), implemented 

in NONMEM
 Laplace integration
 Stochastic and Monte Carlo methods

 Software: SAS PROC NLMIXED, Perl-speaks-NONMEM (PsN), R packages 
(nlme, nlmer, saemix, brms, nlmixr), etc.
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Population PK/PD studies
Optimal Designs

 Optimal design problem in this context involves maximization of some criterion 
of the population Fisher information matrix (which is not a closed-form 
expression) (Mentre et al., 1997)

 Elements to be optimized: dose; sampling times; sampling frequency, etc.
 Value:
 ODs can help characterize a typical pattern of PK over time and uncertainty in the 

observations (very important in small studies)
 Number of sampling times may be reduced ⇒ savings in the study cost
 Population ODs may help improve existing therapies or diagnostics
 Population ODs may help bridge different populations (e.g., adult to children)

 Software: a head-to-head comparison of 5 different tools (Nyberg et al., 2015)
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Population PK/PD studies
Model-based adaptive optimal designs (MBAOD)

 MBAOD attempts to overcome potential non-robustness to changes in the 
parameter values of locally optimal designs

 Examples:
 PK bridging study from adults to children (Strömberg, 2016) – MBAOD requires fewer 

children to fulfill the FDA precision criteria compared to traditional estimation 
methodologies

 Robust optimality criterion in MBAOD (Strömberg and Hooker, 2017) – reduced 
sensitivity to model misspecification and improved practicality of experimental design

 Software: R package MBAOD (https://github.com/andrewhooker/MBAOD)
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Summary  
The Punchline...

Optimal designs are applicable in all stages of drug development, and they serve 
at least two important purposes:
1. ODs provide important theoretical benchmarks for judging alternatives

 If a simple heuristic procedure is shown to be robust and nearly as efficient as the 
optimal one, its use may be well justified in a given trial

 If a simple procedure exhibits high loss in efficiency, then alternatives should be 
considered

2. Adaptive ODs (stage-wise or sequential) can be constructed and 
implemented in practice
 Study goals can be potentially achieved with a reduced sample size
 Careful calibration is required, multi-stakeholder collaboration
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More details in our two JSTP papers:
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